An Experimental Study of Basic Communication Protocols in Ad-hoc Mobile Networks

Ioannis Chatzigiannakis, Sotiris Nikoletseas, Nearchos Paspallis, Paul Spirakis, Christos Zaroliagis

> Computer Technology Institute and Dept of Computer Eng & Informatics, University of Patras

Mobile Computing

- A new computing environment
 - New wireless products and research
 - Wireless media for transmitting data
 - Slower but more convenient than wired media
- Constraints in Mobile Computing
 - Poor resources
 - Limited communication bandwidth
 - Highly dynamic connectivity
 - Volatile energy sources

Models

• Fixed-backbone model

• Ad-hoc model

Fixed-backbone Networks

- *Mobile support stations* are hard-wired connected
- Each mobile support station is assigned a cell
- Communication is always routed through the fixed backbone part of the network
- Modern cellular networks ⊂ Fixed-backbone Networks

Ad-hoc Networks

- No established infrastructure
- No centralized administration
- Every user is mobile with wireless communication capabilities
- Not-in-range users use multihop communication
- Users must be willing to forward packets

Motivation for Ad-hoc Mobile Networks

- Easy and rapid deployment in unknown terrain
- No existing infrastructure is available
- Robustness
- Instant networking
- Ad-hoc networks are ideal for rescue missions (or military operations)

Problem

Basic communication problem in ad-hoc networks

Send information from some sender S to some receiver R

• Difficulties

- > Highly dynamic system
- > Connections are constantly forming and breaking
- No centralized control

Compulsory vs Non-compulsory protocols

- *Non-compulsory*: movement of hosts is independent of the protocol
- *Compulsory:* all hosts move as per the needs of the protocol

A compromise

Semi-compulsory: a very small part of hosts (the *support* Σ) move as per the needs of the protocol

Our contribution

- A new simulation environment
- Experimental study of two semi-compulsory protocols

Snake [Chatzigiannakis, Nikoletseas, Spirakis, 2000]

Re-implementation

Runners (a new semi-compulsory protocol!)

- New protocol improves performance
- Both protocols require a very small $|\Sigma|$

Set-up phase: form snake structure

Snake Snake Others: move where their "predecessor" was before

- Messages forwarded from Σ to *Receivers*
- Synchronization: messages are copied to each member of Σ

The Runners protocol JEF

- No set-up phase: independent runners
- *Runners:* each runner performs an independent random walk
- Messages forwarded from Σ to *Receivers*
- Synchronization: requires 2 rounds

The Model of the Space of Motion [Hatzis et al, 1999]

- Graph-theoretic model
- The environment is abstracted by a graph

An Experimental Study of Basic Communication Protocols in Ad-hoc Mobile Networks

The simulation environment

- LEDA data types
 - > sets

> lists

An Experimental Study of Basic Communication Protocols in Ad-hoc Mobile Networks

Experimental setup

- Five (5) types of motion graphs
 - ➤ random graphs
 - > 2-D grids
 - ➢ 3-D grids
 - bipartite multistage graphs
 - > two-level motion graphs
- Number of nodes: $n \in [400, 6400]$
- Support size: $k \in [3, 45]$
- 1,000 users × 100 messages = 100,000 total transactions

Bipartite multistage motion graphs

Two-level motion graphs

Results - 1/6

Results - 2/6

Results - 3/6

Results - 4/6

Results - 5/6

Total Message Copies in Support

Results - 6/6

Delivery Rate of Support

- Conclusions
 - Experimental study of two basic communication protocols for ad-hoc mobile networks
 - The *Runners* protocol outperforms the *Snake* protocol for almost every input considered

- Future Work
 - Theoretical analysis of the *Runners* protocol
 - Dynamic control of support population (births and deaths)