Exploring the usability of SEESAW: An educational kiosk-based mobile application

Nicos Kasenides

Nearchos Paspallis npaspallis@uclan.ac.uk

nkasenides2@uclan.ac.uk

UCLan Cyprus

22nd European Mediterranean & Middle Eastern Conference on Information Systems Paphos, Cyprus

Outline

- Introduction & Motivation
- Background and related work
- The SEESAW app
- Methodology
- Results & Discussion
- Conclusions & future work

Introduction and motivation

- Self-Service Kiosks (SSKs) have become a part of everyday life [1, 2]
 - Commercial apps (e.g., ordering food at restaurants)
 - Advertising (e.g., malls/shops)
 - Information points (e.g., airports, malls)
 - Healthcare services (hospitals)
 - Education (e.g., universities, training facilities)

- Environmental factors (e.g., noise/light levels, etc.)
- Context (e.g., activities, distractions, level of concentration, etc.)
- Variety of device types (e.g., orientation, resolution, responsiveness, etc.)

Research aims

Explore the usability of kiosk-based mobile applications:

- 1. What are the <u>main usability challenges</u> in designing educational kiosk-based applications?
- 2. How <u>effective</u> is SEESAW's UI in enabling a <u>good level of task</u> <u>performance</u>?
- 3. How do <u>users experience</u> the SEESAW app and how do they <u>perceive its usability</u>?

Related work

- Usability evaluation methods for kiosk apps:
 - Heuristics (e.g., Nielsen) [4]
 - User observations
 - Task-based assessment
 - Expert analysis
 - Usefulness Satisfaction Ease of use (USE) questionnaire
- *Domain-specific* usability evaluation:
 - Fast-food industry

 order accuracy, transaction numbers [5]
 - Transportation → reduce frustration
 - Healthcare → Ease of use, accessibility [6]
- Features: high-contrast, text-to-speech, multilingual support, etc.

Implementation of the SEESAW app

- Cross-platform web app: Flutter framework
- Prototyping w/ low & highfidelity wireframes
- Aims to educate learners regarding research ethics through 2 perspectives:
 - Policy makers (8-10 mins)
 - Research Ethics Committee member (12-14 mins)

The SeeSaw app – Components

Poll/Vote activities

The SEESAW app – Kiosk features

- 1. Forward progression: forcing users to only move forward
 - Ensures a predictable learning path and controls interaction duration.
- 2. Skippable content: Users may skip content they are already familiar with
 - User-tailored experience
- 3. Layered UI design: Incorporates a looping screensaver video to attract users
- 4. Reset options: Allow users to restart the app
 - Start a new experience after another person
 - If abandoned mid-session, the app starts a countdown and resets after a period of inactivity

Usability evaluation: Research methodology

Mixed methods approach:

- Assess user experience & educational effectiveness
- Combine quantitative responses w/ open-ended feedback
- Identify the main usability challenges

Sampling process:

- 22 participants (multiple level of experience & domains)
- 10-minute introduction to SEESAW and its purpose
- Allow participants to use the app on the same devices (controlled environment, consistency)
- Follow either of the two perspectives (same structure)
- Complete an online questionnaire which records:
 - Usefulness, Satisfaction, Easy of Use (USE), Ease of learning
 - Usability (Nielsen's heuristics) [4]
 - Open-ended feedback regarding usability issues & recommendations

Results – Usefulness, Satisfaction, Ease of use

Results – Heuristic evaluation

Nielsen's heuristics [4]:

- 1. Visibility of system status
- 2. Match between system and the real world
- 3. User control and freedom
- 4. Consistency and standards
- 5. Error prevention
- 6. Recognition rather than recall
- 7. Flexibility and efficiency of use
- 8. Aesthetic and minimalist design
- 9. Help users recognize diagnose and recover from errors
- 10. Help and documentation

Results – Qualitative feedback

Reported problems

Suggestions

Discussion & Conclusions

RQ1: What are the main usability challenges with using the educational kiosk-based application?

- Lack of control (H₃) Video pausing/seeking, pros/cons undo
- Navigation issues
- Option to rewatch videos

Discussion & Conclusions

RQ2: How effective is SEESAW's User Interface (UI) in enabling a good level of task performance?

- User Interface supports a high level of task performance
- Clear, organized
- Easy to learn and use
- Improvements needed in interactive components (e.g., drag and drop not very accurate or responsive)

Discussion & Conclusions

RQ3: How do users experience the SEESAW app, and how do they perceive its usability?

- Very positive experience
- Pleasant activities
- Visually appealing and engaging
- High usability may not be consistent across all parts of the app

Limitations

- Limited number of participants (n=22)
- Evaluation based on only 1 device (for consistency, but also a limitation)
- Evaluation context was a 'protected environment' which allowed to focus on specific features but ignored real-wolrd variability (noise, light, social interactions, etc.)

N. Kasenides, N. Paspallis

See also...

http://prepared-project.eu

References

[1] Lee, C.E., Lee, T.: Evaluating the impact of a kiosk education app intervention on students with intellectual and developmental disabilities. Journal of Special Education Technology 40(1), 3–12 (2025)

[2] Pacheco, P., Santos, F., Coimbra, J., Oliveira, E., Rodrigues, N.F.: Designing effective user interface experiences for a self-service kiosk to reduce emergency department crowding. In: 2020 IEEE 8th International Conference on Serious Games and Applications for Health (SeGAH). pp. 1–8 (2020). https://doi.org/10.1109/SeGAH49190.2020.9201858

[3] Mishra, B.K., Choudhary, B.S., Bakshi, T.: Touch based digital ordering system on android using gsm and bluetooth for restaurants. In: 2015 Annual IEEE India Conference (INDICON). pp. 1–5. IEEE (2015)

[4] Nielsen, J.: How to conduct a heuristic evaluation. Nielsen Norman Group 1(1), 8 (1995)

[5] Nasir, M.N.M., Rahman, N.A.A., Aziz, N.A.A.: The user experience (ux) analysis of self-service kiosk (ssk) in waiting time at fast food restaurant using user experience (ux) model. ResearchGate (2021)

[6] Nielsen, J., Budiu, R.: Mobile Usability. New Riders Publishing (2012), https://www.nngroup.com/books/mobile-usability/

