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Background and motivation

* Problem
* Majority of people are consumers of the digital world

* Very few delve into the more creative side of coding and
algorithmic thinking

* Tackling the issue

* Inspire more people to take an interest in coding and
algorithmic thinking: become producers in the digital world

* Hour of Code, Code Week, Code Cyprus, etc.

* Our complementary approach

* A software architecture for developing games
W that teach coding and algorithmic thinking
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e Related works
e Scratch platform [Resnick et al. 2009]
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* RoboCode [O’Kelly 2006] =

(2021) Code combat. https://codecombat.com

J. O’Kelly and J. P. Gibson, “Robocode & problem-based learning: A non-prescriptive approach to »
teaching programming,” SIGCSE Bull., vol. 38, no. 3, p. 217-221, Jun. 2006. e gt
https://doi.org/10.1145/1140123.1140182 e

1 package sample;
2
3 import robocode.*;

4
5 public class MyFirstRobot extends Robot [

M. Resnick, J. Maloney, A. Monroy-Hern’andez, N. Rusk, E. Eastmond, K. Brennan, A. Millner, E.

8 public un() {

Rosenbaum, J. Silver, B. Silverman, and Y. Kafai, “Scratch: Programming for all,” Commun. ACM, vol. - |
52, no. 11, p. 60—67, Nov. 2009. https://doi.org/10.1145/1592761.1592779 l‘z:)
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Objectives

* Tackle the following research questions:

 How can we quickly and affordably develop new games
that teach coding and algorithmic thinking?

 How can visual programming-based languages be
integrated in such games?

* How can such games be extended to enable concurrent,
multiplayer mode?

* How can we assess whether the resulting
games are effective in promoting the
complexity, wealth and value of learning

to code?
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Requirements

* Learners play simple games, which help them learn
programming

* Players define code using a graphical programming
language, such as Blockly
* Allow real-time competitive mode

* Run on affordable hardware like Android-based
smartphones and commodity cloud platforms
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Game Model

* Actors

* Grid

* Objects (pickables and obstacles)
* Game State

* Actions

* Rules

Interval 100 ms >
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Gameplay

* Users play by means of defining code

* Use standard blocks from Blockly
e if/else if
 do/while
- get/set variables
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 Code is embedded in two methods:
« Initialize()
* Run()
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Components and Architecture

* Components
* Game API
* Blockly Editor
* Game Runtime
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Architecture:
local game

* Development steps

1.

Define blocks for custom
commands using Blockly
Developer Tools

(https://developers.google.com

/blockly)

Compile into JavaScript
* Possibly outputs errors/warnings

Execute in Game Runtime and
send state updates to clients to
update their Ul
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Blockly Editor

Compile

JS

Game Runtime
Local
Values @

Custom Commands

Move Forward

Turn Clockwise

move_forward()
turn_clockwise()

look()



https://developers.google.com/blockly

Architecture:
distributed, multiplayer game

Blockly Editor

Client P,

Compile

JS
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Client P,

Compile

upload
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Architecture:
distributed, multiplayer game

Client P,

Compile Server
1 JS upload
P
1 JS ri
Game Ul update
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Client P,

Blockly Editor

* Split between local,
client-side Blockly editor
and Ul and a remote,
server-side Game Runtime
and shared state

Blockly Editor

Network

* Development steps 1 and
2 as before (locally)

1. Define blocks for custom commands using Blockly Developer Tools
2. Compile into JavaScript

3. Onthe server-side, centrally execute each player’s
code with Game Runtime and update the Ul
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Evaluation

e Case Study-based Evaluation

* Reusability of code across local (single)
and distributed (multiplayer) versions

» Reusability of code across different games
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Evaluation i - B

e Case Study-based Evaluation B e TN,
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e User-based Evaluation

* aMazeChallenge Android game developed and used (see QRCode)
Limited-scale, student-based evaluation revealed that “the participants
showed that [the app] made them feel more confident in their ability to
program”, as it was documented in [Kasenides & Paspallis]

N. Kasenides and N. Paspallis, “amazechallenge: An

interactive multiplayer game for learning to code,” in

29th International Conference on Information Systems

Development (ISD2021). Valencia, Spain: Association
Al for Information Systems, Sep. 2021. Available:

P University of https://aisel.aisnet.org/isd2014/proceedings2021/met
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Conclusions

e Achievements

* Presented a software architecture for developing distributed games
that aim to teach coding

* Evaluation of the architecture through a case study, which
demonstrates how the research questions have been answered

* Meeting [most of] the research objectives

* Future work
* Web-based client
* Extend APIs, e.g., to support control of physical robots
* Additional user-based evaluation
* Work towards a pedagogical framework
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Thank you!
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