
A Software Architecture for Developing
Distributed Games that Teach Coding

and Algorithmic Thinking

Nearchos Paspallis, Nicos Kasenides, Andriani Piki
University of Central Lancashire (Cyprus) − UCLan Cyprus

Computer Software and Applications
Conference (COMPSAC 2022)

Outline

• Background and Motivation

• Objectives and Requirements

• Software Architecture

• Game Model and Game Play

• Local and Distributed Architecture

• Evaluation

• Conclusions

Background and motivation
• Problem

• Majority of people are consumers of the digital world
• Very few delve into the more creative side of coding and

algorithmic thinking

• Tackling the issue
• Inspire more people to take an interest in coding and

algorithmic thinking: become producers in the digital world
• Hour of Code, Code Week, Code Cyprus, etc.

• Our complementary approach
• A software architecture for developing games

that teach coding and algorithmic thinking

Background and
motivation

• Related works
• Scratch platform [Resnick et al. 2009]

• Code Combat [2021]

• RoboCode [O’Kelly 2006]
(2021) Code combat. https://codecombat.com

J. O’Kelly and J. P. Gibson, “Robocode & problem-based learning: A non-prescriptive approach to
teaching programming,” SIGCSE Bull., vol. 38, no. 3, p. 217–221, Jun. 2006.
https://doi.org/10.1145/1140123.1140182

M. Resnick, J. Maloney, A. Monroy-Hern´andez, N. Rusk, E. Eastmond, K. Brennan, A. Millner, E.
Rosenbaum, J. Silver, B. Silverman, and Y. Kafai, “Scratch: Programming for all,” Commun. ACM, vol.
52, no. 11, p. 60–67, Nov. 2009. https://doi.org/10.1145/1592761.1592779

https://codecombat.com/
https://doi.org/10.1145/1140123.1140182
https://doi.org/10.1145/1592761.1592779

Objectives
• Tackle the following research questions:

• How can we quickly and affordably develop new games
that teach coding and algorithmic thinking?

• How can visual programming-based languages be
integrated in such games?

• How can such games be extended to enable concurrent,
multiplayer mode?

• How can we assess whether the resulting
games are effective in promoting the
complexity, wealth and value of learning
to code?

Requirements

• Learners play simple games, which help them learn
programming

• Players define code using a graphical programming
language, such as Blockly

• Allow real-time competitive mode
• Run on affordable hardware like Android-based

smartphones and commodity cloud platforms

Game Model
• Actors
• Grid
• Objects (pickables and obstacles)
• Game State
• Actions
• Rules

Gameplay
• Users play by means of defining code

• Use standard blocks from Blockly
• if/else if
• do/while
• get/set variables

• Code is embedded in two methods:
• Initialize()
• Run()

Components and Architecture

• Components
• Game API
• Blockly Editor
• Game Runtime

Architecture:
local game
• Development steps
1. Define blocks for custom

commands using Blockly
Developer Tools
(https://developers.google.com
/blockly)

2. Compile into JavaScript
• Possibly outputs errors/warnings

3. Execute in Game Runtime and
send state updates to clients to
update their UI

https://developers.google.com/blockly

Architecture:
distributed, multiplayer game

Architecture:
distributed, multiplayer game

• Split between local,
client-side Blockly editor
and UI and a remote,
server-side Game Runtime
and shared state

• Development steps 1 and
2 as before (locally)

1. Define blocks for custom commands using Blockly Developer Tools
2. Compile into JavaScript
3. On the server-side, centrally execute each player’s

code with Game Runtime and update the UI

Evaluation

• Case Study-based Evaluation
• Reusability of code across local (single)

and distributed (multiplayer) versions
• Reusability of code across different games

Evaluation

• Case Study-based Evaluation
• Reusability of code across local (single)

and distributed (multiplayer) versions
• Reusability of code across different games

• User-based Evaluation
• aMazeChallenge Android game developed and used (see QRCode)

Limited-scale, student-based evaluation revealed that “the participants
showed that [the app] made them feel more confident in their ability to
program”, as it was documented in [Kasenides & Paspallis]

N. Kasenides and N. Paspallis, “amazechallenge: An
interactive multiplayer game for learning to code,” in
29th International Conference on Information Systems
Development (ISD2021). Valencia, Spain: Association
for Information Systems, Sep. 2021. Available:
https://aisel.aisnet.org/isd2014/proceedings2021/met
hodologies/1

https://aisel.aisnet.org/isd2014/proceedings2021/methodologies/1/

Conclusions

• Achievements
• Presented a software architecture for developing distributed games

that aim to teach coding
• Evaluation of the architecture through a case study, which

demonstrates how the research questions have been answered
• Meeting [most of] the research objectives

• Future work
• Web-based client
• Extend APIs, e.g., to support control of physical robots
• Additional user-based evaluation
• Work towards a pedagogical framework

Thank you!

Dr Nearchos Paspallis
NPaspallis@uclan.ac.uk

Dr Cand Nicos Kasenides
NKasenides@uclan.ac.uk

Dr Andriani Piki
APiki@uclan.ac.uk

mailto:NPaspallis@uclan.ac.uk
mailto:NKasenides@uclan.ac.uk
mailto:APiki@uclan.ac.uk

	A Software Architecture for Developing Distributed Games that Teach Coding and Algorithmic Thinking
	Outline
	Background and motivation
	Background and motivation
	Objectives
	Requirements
	Game Model
	Gameplay
	Components and Architecture
	Architecture:�local game
	Architecture:�distributed, multiplayer game
	Architecture:�distributed, multiplayer game
	Evaluation
	Evaluation
	Conclusions
	Thank you!

