A Software Architecture for Developing
Distributed Games that Teach Coding
and Algorithmic Thinking

Nearchos Paspallis, Nicos Kasenides, Andriani Piki
University of Central Lancashire (Cyprus) —UCLan Cyprus

Al
3 University of

@ Central Lancashire Computer Software and Applications
Cyprus Conference (COMPSAC 2022)

Outline

e Background and Motivation

e Objectives and Requirements

Software Architecture

 Game Model and Game Play

e Local and Distributed Architecture

Evaluation

Conclusions

Al
¥ University of
@ Central Lancashire

Cyprus

=

Background and motivation

* Problem
* Majority of people are consumers of the digital world

* Very few delve into the more creative side of coding and
algorithmic thinking

* Tackling the issue

* Inspire more people to take an interest in coding and
algorithmic thinking: become producers in the digital world

* Hour of Code, Code Week, Code Cyprus, etc.

* Our complementary approach

* A software architecture for developing games
W that teach coding and algorithmic thinking
¥ University of
@ Central Lancashire

Cyprus

=

GV & rov Eate T R

g Ful 16 Frame Scratch Cat Wakk Cycle sorps
B oy grtpacn ~e

-

Background and
motivation

sat size to @D %

Newsprite: & / @@l €3 [momor] 5
7 . 10207 O
U e CEEENTTD

t) Tree3 GassTel. GhssTal. grassd

e Related works
e Scratch platform [Resnick et al. 2009]

1 #We are field te:
2 # Build 4 decoys,
3 decoysBuilt - g

Sting a new battle unit: the decoy.
then report the total to Naria,

4

5 oin = Self. findNearest

6 if coin:

87 # Loot the coin|
self.moveXY(coin.pos. x, coin.pos.y)

t(self. findItens())

9
10 # Each decoy costs 25 golq,
1 # Know when you have
12 if self.gold - 25;
self.buildXY("decoy",

ere than 25 gold with setf.gotd

Self.pos.x, self.pos.y)

&« # Kegy
P @ count of decoy
5 decoyshuite e g ¥ YU BUILE as you go along,
d COde CO' I |bat 2021 11; if decoysBuilt . 4.
Break out of the 1
19 [pran '® 100p when you have built 4,
20

2L self.say("Done building decoys1")

22 self.movexv(14, 36) .

23 #

2 mc: ::y:a;n: u;\d say how many decoys you built.
. uilt * o ilt + '

“ L " + decoyshuilt + " decoysy

(=Jkd

* RoboCode [O’Kelly 2006] =

(2021) Code combat. https://codecombat.com

J. O’Kelly and J. P. Gibson, “Robocode & problem-based learning: A non-prescriptive approach to »
teaching programming,” SIGCSE Bull., vol. 38, no. 3, p. 217-221, Jun. 2006. e gt
https://doi.org/10.1145/1140123.1140182 e

1 package sample;
2
3 import robocode.*;

4
5 public class MyFirstRobot extends Robot [

M. Resnick, J. Maloney, A. Monroy-Hern’andez, N. Rusk, E. Eastmond, K. Brennan, A. Millner, E.

8 public un() {

Rosenbaum, J. Silver, B. Silverman, and Y. Kafai, “Scratch: Programming for all,” Commun. ACM, vol. - |
52, no. 11, p. 60—67, Nov. 2009. https://doi.org/10.1145/1592761.1592779 l‘z:)
\x\| Z R Y
»a University of E
Central Lancashire |
Cyprus o

https://codecombat.com/
https://doi.org/10.1145/1140123.1140182
https://doi.org/10.1145/1592761.1592779

Objectives

* Tackle the following research questions:

 How can we quickly and affordably develop new games
that teach coding and algorithmic thinking?

 How can visual programming-based languages be
integrated in such games?

* How can such games be extended to enable concurrent,
multiplayer mode?

* How can we assess whether the resulting
games are effective in promoting the
complexity, wealth and value of learning

to code?

Al
¥ University of

@ Central Lancashire

Cyprus

=

Requirements

* Learners play simple games, which help them learn
programming

* Players define code using a graphical programming
language, such as Blockly
* Allow real-time competitive mode

* Run on affordable hardware like Android-based
smartphones and commodity cloud platforms

Al
3 University of
@ Central Lancashire

Cyprus

Game Model

* Actors

* Grid

* Objects (pickables and obstacles)
* Game State

* Actions

* Rules

Interval 100 ms >

N
B University of

Central Lancashire
Cyprus

&

Gameplay

* Users play by means of defining code

* Use standard blocks from Blockly
e if/else if
 do/while
- get/set variables

()
N
@©
=
@©
O
(@)
ol
— |
nf
Q|
o,
(@]
—
.
ey
©
=
(7]
Q
Nol ¥
ol
g
@l
>

 Code is embedded in two methods:
« Initialize()
* Run()

2

3 University of
@ Central Lancashire
Cyprus

K

Components and Architecture

* Components
* Game API
* Blockly Editor
* Game Runtime

Turn Clockwise ‘

Turn Counter-Clockwise

et
(o [UET 1M justTurned ¥ [Rie}

E <
Move For d -
if can move left

can move forward 9
B \J
can move left @ S8 justTurned ¥ Bl
>

can move right @ Turn Counter-Clockvyi

[piitg | - J—_—-
can move backward [‘ else if £, can move f=n

. A =

< ®

Variables Math Loops Logic aMaze &S

e
(0]
N
©
=
@
L
(@)
o
-
(%2}
Q.
o
o
—
X
=
©
=
72]
Q
0
@©
=
©
=

4 [] n

N
3 University of

Central Lancashire
Cyprus

Al

Architecture:
local game

* Development steps

1.

Define blocks for custom
commands using Blockly
Developer Tools

(https://developers.google.com

/blockly)

Compile into JavaScript
* Possibly outputs errors/warnings

Execute in Game Runtime and
send state updates to clients to
update their Ul

Central Lancashire

University of
@ Cyprus

Blockly Editor

Compile

JS

Game Runtime
Local
Values @

Custom Commands

Move Forward

Turn Clockwise

move_forward()
turn_clockwise()

look()

https://developers.google.com/blockly

Architecture:
distributed, multiplayer game

Blockly Editor

Client P,

Compile

JS

&

Client P,

Compile

upload

update

upload

JS

B

Blockly Editor
repeat (TS0

Client Py

Compile

JS

Wupdate

Al

1828 University Of
Central Lancashire

Cyprus

update

upldad

Network

P, JS

P, JS

Variables

Game Runtime

G

move_forward()
turn_clockwise()

look()

Server

Game

Rules
API

State

update

Architecture:
distributed, multiplayer game

Client P,

Compile Server
1 JS upload
P
1 JS ri
Game Ul update
\ e ame
P, ame Runtime ules
al

Client P,

Blockly Editor

* Split between local,
client-side Blockly editor
and Ul and a remote,
server-side Game Runtime
and shared state

Blockly Editor

Network

* Development steps 1 and
2 as before (locally)

1. Define blocks for custom commands using Blockly Developer Tools
2. Compile into JavaScript

3. Onthe server-side, centrally execute each player’s
code with Game Runtime and update the Ul

Al
3 University of
@ Central Lancashire

Cyprus

Evaluation

e Case Study-based Evaluation

* Reusability of code across local (single)
and distributed (multiplayer) versions

» Reusability of code across different games

Al
¥ University of
@ Central Lancashire

Cyprus

=

Evaluation i - B

e Case Study-based Evaluation B e TN,

* Reusability of code across local (single) oo 3 **300°3%%88 oode of :
and distributed (multiplayer) versions 0372 Seeed® 3o °

* Reusability of code across different games soede” °% oo 320

(¢)

e User-based Evaluation

* aMazeChallenge Android game developed and used (see QRCode)
Limited-scale, student-based evaluation revealed that “the participants
showed that [the app] made them feel more confident in their ability to
program”, as it was documented in [Kasenides & Paspallis]

N. Kasenides and N. Paspallis, “amazechallenge: An

interactive multiplayer game for learning to code,” in

29th International Conference on Information Systems

Development (ISD2021). Valencia, Spain: Association
Al for Information Systems, Sep. 2021. Available:

P University of https://aisel.aisnet.org/isd2014/proceedings2021/met

@ Central Lancashire hodologies/1
Cyprus

https://aisel.aisnet.org/isd2014/proceedings2021/methodologies/1/

Conclusions

e Achievements

* Presented a software architecture for developing distributed games
that aim to teach coding

* Evaluation of the architecture through a case study, which
demonstrates how the research questions have been answered

* Meeting [most of] the research objectives

* Future work
* Web-based client
* Extend APIs, e.g., to support control of physical robots
* Additional user-based evaluation
* Work towards a pedagogical framework

Al
¥ University of
@ Central Lancashire

Cyprus

=

Al

1828

Thank you!

University of

Central Lancashire
Cyprus

Dr Nearchos Paspallis
NPaspallis@uclan.ac.uk

Dr Cand Nicos Kasenides
NKasenides@uclan.ac.uk

Dr Andriani Piki
APiki@uclan.ac.uk

mailto:NPaspallis@uclan.ac.uk
mailto:NKasenides@uclan.ac.uk
mailto:APiki@uclan.ac.uk

	A Software Architecture for Developing Distributed Games that Teach Coding and Algorithmic Thinking
	Outline
	Background and motivation
	Background and motivation
	Objectives
	Requirements
	Game Model
	Gameplay
	Components and Architecture
	Architecture:�local game
	Architecture:�distributed, multiplayer game
	Architecture:�distributed, multiplayer game
	Evaluation
	Evaluation
	Conclusions
	Thank you!

